Step of Proof: wellfounded_functionality_wrt_implies
9,38
postcript
pdf
Inference at
*
I
of proof for Lemma
wellfounded
functionality
wrt
implies
:
T1
,
T2
:Type,
r1
:(
T1
T1
),
r2
:(
T2
T2
).
(
T1
=
T2
)
(
x
,
y
:
T1
. {
r1
(
x
,
y
)
r2
(
x
,
y
)})
{WellFnd{i}(
T1
;
x
,
y
.
r1
(
x
,
y
))
WellFnd{i}(
T2
;
x
,
y
.
r2
(
x
,
y
))}
latex
by ((((Unfolds ``wellfounded guard`` 0)
CollapseTHEN (UnivCD))
)
CollapseTHENA (
C
(Auto_aux (first_nat 1:n) ((first_nat 1:n),(first_nat 3:n)) (first_tok :t) inil_term)))
latex
C
1
:
C1:
1.
T1
: Type
C1:
2.
T2
: Type
C1:
3.
r1
:
T1
T1
C1:
4.
r2
:
T2
T2
C1:
5.
T1
=
T2
C1:
6.
x
,
y
:
T1
.
r1
(
x
,
y
)
r2
(
x
,
y
)
C1:
7.
P
:(
T1
). (
j
:
T1
. (
k
:
T1
.
r1
(
k
,
j
)
P
(
k
))
P
(
j
))
{
n
:
T1
.
P
(
n
)}
C1:
8.
P
:
T2
C1:
9.
j
:
T2
. (
k
:
T2
.
r2
(
k
,
j
)
P
(
k
))
P
(
j
)
C1:
n
:
T2
.
P
(
n
)
C
.
Definitions
t
T
,
x
(
s
)
,
WellFnd{i}(
A
;
x
,
y
.
R
(
x
;
y
))
,
x
(
s1
,
s2
)
,
P
Q
,
{
T
}
,
P
Q
,
,
x
:
A
.
B
(
x
)
Lemmas
rev
implies
wf
,
guard
wf
origin